Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 256: 124303, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724692

RESUMO

DDAO (1,3-Dichloro-7-hydroxy-9,9-dimethyl-2(9H)-acridone) is a near-infrared (NIR) fluorophore that has received increasing attention in recent years, exhibiting near-infrared emission at 658 nm, low pKa (∼5.0), good water solubility and high quantum yield (Φ = 0.39). The reported DDAO-based fluorescent probes can be applied to biological imaging ofenzymes and other substances in vivo with high sensitivity and selectivity. Herein, using -OCN as the detection group, a novel NIR H2S fluorescent probe DDAO-CN based on DDAO was designed and synthesized. In PBS buffer (10 mM, pH 7.4), probe DDAO-CN displayed specific selection, short response time (within 10 s) and low detection limit (4.3 nM) towards to H2S under the catalysis of CTAB. At the same time, the probe is able to sense H2S gas produced by food spoilage via the fluorescent test strip loaded with DDAO-CN. Moreover, since the probe has optimal pH range (6.0-9.0), it has been successfully used for bioimaging H2S in the HeLa cells with low cytotoxicity.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Corantes Fluorescentes/química , Células HeLa , Água
2.
J Chromatogr A ; 1685: 463621, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36334568

RESUMO

Three aryl ketones-derived porous organic polymers (ATP-POPM, ATP-POPP and ATP-POPO) were fabricated through the aldol condensation reaction of acetylated triphenylsilane precursor (ATP) with different aromatic aldehydes for the first time. The ATP-POPM exhibited superior extraction capacity toward phenylurea herbicides (PUHs). A sensitive method for the simultaneous determination of six PUHs in water, tea drink and mushroom samples was developed with ATP-POPM as solid phase extraction adsorbent prior to high performance liquid chromatography ultraviolet detection. Under the optimized conditions, the linear response of PUHs was 0.09-80.0 ng mL-1 for water, 0.18-100.0 ng mL-1 for tea drinks and 4.50-200.0 ng g -1 for mushroom samples. The detection limits (S/N=3) of the method were 0.03-0.10 ng mL-1, 0.06-0.18 ng mL-1, 1.50-4.50 ng g -1 for water, tea drink and mushroom, respectively. The method recoveries for spiked samples were in the range of 80.7%-116.0%, with relative standard deviations less than 10.3%. The results proved that the established method was sensitive and suitable to detect PUHs with acceptable accuracy and precision. This work provided a powerful tool to synthesize promising adsorbent by aldol condensation reaction for detecting six PUHs simultaneously in real samples.


Assuntos
Agaricales , Herbicidas , Herbicidas/análise , Polímeros/química , Água/química , Porosidade , Cetonas/análise , Compostos de Fenilureia/análise , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Chá/química , Trifosfato de Adenosina
3.
Mikrochim Acta ; 189(1): 21, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878596

RESUMO

Three carbonyl-functional novel hypercrosslinked polymers (HCP-TPS, HCP-TPA, and HCP-TPP) were successfully fabricated through an one-step Friedel-Crafts acylation reaction by copolymerizing paraphthaloyl chloride with triphenylsilane, triphenylamine, and triphenylphosphine, respectively. The resultant HCPs contained plenty of carbonyl-functional groups. Among the series of such HCPs, HCP-TPS displayed the best adsorption capability to chlorophenols (CPs), and thus it was employed as solid-phase extraction (SPE) adsorbent for enrichment of chlorophenols from water, honey, and white peach beverage prior to determination by high-performance liquid chromatography. Under the optimal conditions, the detection limits of the method (S/N = 3) were 0.15-0.3 ng mL-1 for tap water and leak water, 2.5-6.0 ng g-1 for honey sample and 0.4-0.6 ng mL-1 for white peach beverage sample. The recoveries of CPs in the spiked water, honey samples, and white peach beverage were in the range of 89.0-108.4%, 81.4-118.2%, and 85.0-113.5%, respectively. This work provides a new strategy for constructing functionalized HCPs as efficient SPE adsorbents. In this work, three novel hypercrosslinked polymers (HCPs) were synthesized by the Friedel-Crafts alkylation reaction (paraphthaloyl chloride as the alkylating agent, triphenylsilane, triphenylamine, and triphenylphosphine as the aromatic units). Then, HCP-TPS was applied to soild-phase extraction sorbent for enrichment CPs from water, honey, and white peach beverage samples.


Assuntos
Clorofenóis/isolamento & purificação , Polímeros/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Bebidas/análise , Clorofenóis/análise , Clorofenóis/química , Cromatografia Líquida de Alta Pressão , Água Potável/análise , Contaminação de Alimentos/análise , Mel/análise , Lagos/análise , Limite de Detecção , Extração em Fase Sólida/métodos , Água/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
4.
J Chromatogr A ; 1658: 462610, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34662826

RESUMO

Food safety is a great concern of the general public. Chlorophenols (CPs) as organic pollutant can be found in drinking water and foods, causing serious harm to human health. Herein, imine-linked covalent organic frameworks (COFs), named as TAPT-AN-COF, was synthesized by aniline modulation strategy through condensation of 1,3,5-triformylphoroglucinol and 4,4',4''-(1,3,5-Triazine-2,4,6-triyl)trianiline with aniline as modulator. The prepared TAPT-AN-COF possesses good crystallinity and regular morphology, displaying excellent adsorption capability towards CPs pollutants. Thus, the TAPT-AN-COF was used as novel adsorbent for off-line solid-phase extraction of four CPs (2-CP, 3-CP, 2,3-CPs, 2,4-CPs) from bottled water, tea drink and honey samples before high performance liquid chromatography-ultraviolet detection. Under optimal conditions, wide linear range, low detection limits and satisfactory extraction recovery were gained. The π-stacking and hydrophobic interactions between the TAPT-AN-COF and the analytes played an important role in the adsorption. The established method has a great potential in determining other hydrophobic aromatic compounds.


Assuntos
Clorofenóis , Estruturas Metalorgânicas , Adsorção , Humanos , Iminas , Limite de Detecção , Extração em Fase Sólida
5.
J Sep Sci ; 43(13): 2594-2601, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32240574

RESUMO

A solid-phase microextraction with carbon nanospheres coated fiber coupled with gas chromatographic detection was established for the determination of eight polycyclic aromatic hydrocarbons (naphthalene, biphenyl, acenaphthene, fluorine, phenanthrene, anthracene, fluoranthene, and pyrene) in water and soil samples. The experimental parameters (extraction temperature, extraction time, stirring rate, headspace volume, salt content, and desorption temperature) which affect the extraction efficiency were studied. Under the optimized conditions, good linearity between the peak areas and the concentrations of the analytes was achieved in the concentration range of 0.5-300 ng/mL for water samples, and in the concentration range of 6.0-2700 ng/g for soil samples. The detection limits for the analytes were in the range of 0.12-0.45 ng/mL for water samples, and in the range of 1.53-2.70 ng/g for soil samples. The method recoveries of the polycyclic aromatic hydrocarbons for spiked water samples were 80.10-120.1% with relative standard deviations less than 13.9%. The method recoveries of the analytes for spiked soil samples were 80.40-119.6% with relative standard deviations less than 14.4%. The fiber was reused over 100 times without a significant loss of extraction efficiency.

6.
J Sep Sci ; 39(16): 3171-7, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27306964

RESUMO

A solid-phase microextraction fiber was prepared by mixing graphene oxide and hydroxyl-terminated polydimethylsiloxane together and then coating the mixture on the surface of etched stainless-steel wire by sol-gel technology. After aging by heating, the graphene oxide-polydimethylsiloxane composite coated fiber was used for the direct solid phase microextraction of triazole fungicides from water samples. The properties of the graphene oxide-polydimethylsiloxane coating were characterized by transmission electron microscopy and thermogravimetric analysis. And the chemical stability of the coating was tested as well. Several important experimental parameters that could influence the extraction efficiency such as desorption temperature and time, extraction temperature and time, sample pH and stirring rate, were investigated and optimized. Under the optimized conditions, the limits of detection were in the range from 0.01 to 0.03 µg/L. The results indicated that the homemade fiber had the advantages of good thermal and chemical stability and high extraction efficiency, which was successfully applied to the analysis of triazoles in water samples.

7.
J Sep Sci ; 38(16): 2880-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041569

RESUMO

A mesoporous carbon was fabricated using MCM-41 as a template and sucrose as a carbon source. The carbon material was coated on stainless-steel wires by using the sol-gel technique. The prepared solid-phase microextraction fiber was used for the extraction of five volatile aromatic compounds (chlorobenzene, ethylbenzene, o-xylene, bromobenzene, and 4-chlorotoluene) from tea beverage samples (red tea and green tea) prior to gas chromatography with mass spectrometric detection. The main experimental parameters affecting the extraction of the volatile aromatic compounds by the fiber, including the extraction time, sample volume, extraction temperature, salt addition, and desorption conditions, were investigated. The linearity was observed in the range from 0.1 to 10.0 µg/L with the correlation coefficients (r) ranging from 0.9923 to 0.9982 and the limits of detection were less than 10.0 ng/L. The recoveries of the volatile aromatic compounds by the method from tea beverage samples at spiking levels of 1.0 and 10.0 µg/L ranged from 73.1 to 99.1%.

8.
Se Pu ; 33(2): 103-11, 2015 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-25989680

RESUMO

As a relatively new sample preparation technique, dispersive liquid-liquid microextraction (DLLME) has the advantages of simplicity of operation, high enrichment factor and low consumption of organic solvent. In this review, the recent advances of DLLME and its important applications are briefly reviewed, including (1) the combined use of DLLME with other extraction methods, (2) the expansion of the extraction solvent, (3) the development of extraction devices.

9.
Talanta ; 129: 600-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25127639

RESUMO

In this study, polydimethylsiloxane/metal-organic frameworks (PDMS/MOFs), including PDMS/MIL-101 and PDMS/MOF-199, were immobilized onto a stainless steel wire through sol-gel technique as solid-phase microextraction (SPME) fiber coating. The prepared fibers were used for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from water samples prior to gas chromatography-mass spectrometry (GC-MS) analysis. Under the optimized experiment conditions, the PDMS/MIL-101 coated fiber exhibited higher extraction efficiency towards PAHs than that of PDMS/MOF-199. Several parameters affecting the extraction of PAHs by SPME with PDMS/MIL-101 fiber, including the extraction temperature, extraction time, sample volume, salt addition and desorption conditions, were investigated. The limits of detection (LODs) were less than 4.0 ng L(-1) and the linearity was observed in the range from 0.01 to 2.0 µg L(-1) with the correlation coefficients (r) ranging from 0.9940 to 0.9986. The recoveries of the method for the PAHs from water samples at spiking levels of 0.05 and 0.2 µg L(-1) ranged from 78.2% to 110.3%. Single fiber repeatability and fiber-to-fiber reproducibility were less than 9.3% and 13.8%, respectively.


Assuntos
Dimetilpolisiloxanos/química , Metais/química , Compostos Orgânicos/química , Hidrocarbonetos Policíclicos Aromáticos/química , Microextração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lagos , Ligantes , Limite de Detecção , Transição de Fase , Reprodutibilidade dos Testes , Rios , Sais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água/química , Difração de Raios X
10.
J Sep Sci ; 37(4): 440-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24318069

RESUMO

In this work, a graphene composite was coated onto etched stainless-steel wire through a sol-gel technique and it was used as a solid-phase microextraction (SPME) fiber. The prepared fiber was characterized by SEM, which revealed that the fiber had a highly porous structure. The application of the fiber was evaluated through the headspace SPME of five halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, 1,3-dichlorobenzene, 1,2-dichlorobenzene, and 1,2,4-trichlorobenzene) in water samples followed by GC with flame ionization detection. The main factors influencing the extraction efficiency, including headspace volume, extraction time, extraction temperature, stirring rate, ionic strength of sample solution, and desorption conditions, were studied and optimized. Under the optimum conditions, the linearity of the method ranged from 2.5 to 800.0 µg/L for 1,2,4-trichlorobenzene and from 2.5 to 500.0 µg/L for chlorobenzene, bromobenzene, 1,3-dichlorobenzene, and 1,2-dichlorobenzene, with the correlation coefficients (r) ranging from 0.9962 to 0.9980, respectively. The LODs (S/N = 3) of the method for the analytes were in the range between 0.5 and 1.0 µg/L. The recoveries of the method for the analytes obtained for the spiked water samples at 50.0 and 250.0 µg/L were from 76.0 to 104.0%.

11.
Se Pu ; 31(11): 1071-5, 2013 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-24558842

RESUMO

A novel method was developed for the determination of seven triazine herbicides in environmental water samples by magnetic solid-phase extraction with graphene-based magnetic nanoparticles (G-Fe3O4 MNPs) as the adsorbent coupled with gas chromatography-mass spectrometry detection. The main factors influencing the extraction efficiency including the amount of G-Fe3O4, the extraction time, the pH and the ionic strength of sample solution and the desorption conditions were optimized. Under the optimized experimental conditions, the enrichment factors of the method for the analytes were in the range from 574 to 968; the linearities of the method ranged from 0.01 to 10.0 microg/L for simazine, propazine, metribuzin, simetryn and cyanazine, from 0.05 to 10.0 microg/L for atrazine and from 0.01 to 8.0 microg/L for prometryn, with the correlation coefficients (r) ranging from 0.996 8 to 0.999 8. The limits of detection were in the range between 1.0 and 5.0 ng/L. Good reproducibilities were obtained with the relative standard deviations below 10.5%. The developed method was applied to the analysis of the triazine herbicides in different water samples (lake, well and tap). The recoveries of the method were in the range from 79.8% to 118.3% at the spiked levels of 0.5 microg/L and 2.0 microg/L. The results indicated that the developed method can be used as a simple and efficient technique for the determination of the triazine herbicides in environmental water samples.


Assuntos
Água Potável/análise , Cromatografia Gasosa-Espectrometria de Massas , Herbicidas/análise , Grafite , Lagos/química , Nanopartículas de Magnetita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...